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General consensus: crypto and complexity oppose 
machine learning.
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This talk: how, and when, can crypto or complexity 
positively impact ML?

General consensus: crypto and complexity oppose 
machine learning.

• Both crypto and complexity can help us reason about the ML 
“real world” (e.g., why is training on text and images more 
effective than training on just text?) 


• Crypto can help us design more secure and private ML 
algorithms


• Complexity theory can give us technical machinery for faster 
and more robust ML algorithms



Outline of this talk.

1. Crypto and Complexity to reason about the ML “real world” (15m)


2. Crypto to design data annotation algorithms that prevent 
information leakage about inductive bias (9m)


3. Mining complexity theory results for technical machinery (6m)


4. Future directions + Q & A (15m)



Multimodal Perception + Machine Learning

“A picture is worth 1000 words”

Image generated by GPT-4

• Access to multiple representations of the same concept is useful 
for humans (“when you put it that way…”)
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Multimodal Perception + Machine Learning

• Access to multiple representations of the same concept is useful 
for humans (“when you put it that way…”)


• Empirical triumphs of multimodal perception: GPT-4 (OpenAI), 
Gemini (Google)

• Training general agents on text and images produces models that 
remain applicable to purely textual tasks, but even better. 

• How? When? Why? 

• Due to massive computational and statistical costs, we should 
figure it out!



Multimodal ML Theory

A simple Bimodal Learning model

• Little theory about how when and why?
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• Little theory about how when and why?

Corresponding Unimodal Learning model
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• Is access to the Bimodal data “more powerful” than the 

Unimodal data?
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• Is access to the Bimodal data “more powerful” than the 
Unimodal data?


Computational separation — Identify a class of multimodal data distributions 
and single loss function, such that:


•Given the Multimodal dataset, finding a hypothesis with low test error is 
computationally easy — for all distributions in the class.


•Given the Unimodal dataset, finding a hypothesis with low test error is 
computationally hard — for the hardest distribution in the class.
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• Lu (NeurIPS ’23, ALT ’24): statistical + computational separations 
between ML tasks with multimodal and unimodal data  

• Is access to the Bimodal data “more powerful” than the 
Unimodal data?


• Lu’s separations are a great first step, but they apply only to the 
worst-case instances of the task. “Edge cases.” 

Average-case Computational separation — Identify a meta-distribution over 
multimodal data distributions, and single loss function, such that:


•Given a Multimodal dataset, finding a hypothesis with low test error is 
computationally easy — with high probability over meta-distribution.
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• Lu (NeurIPS ’23, ALT ’24): statistical + computational separations 
between ML tasks with multimodal and unimodal data  

• Is access to the Bimodal data “more powerful” than the 
Unimodal data?


• Lu’s separations are a great first step, but they apply only to the 
worst-case instances of the task. “Edge cases.” 

• Karchmer (preprint, ’24): computational separation for average-case 
instances of task using a complexity-theoretic assumption. “Every 
day tasks.”

Average-case Computational separation — Identify a meta-distribution of 
multimodal data distributions, and single loss function, such that:


•Given a Multimodal dataset, finding a hypothesis with low test error is 
computationally easy — with high probability over meta-distribution.


•Given a Unimodal dataset, finding a hypothesis with low test error is 
computationally hard — with high probability over meta-distribution.

This informs practice better because the 
the hardness and easiness are very 
likely to apply.


Not only on the “pathological” worst-
case instance.




Multimodal ML Theory
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It looks like Crypto Key Agreement (KA)!
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Multimodal ML Theory

Karchmer (preprint, ’24): Use Crypto to present an heuristic 
argument that encountering a computational advantage through an 
“natural” meta-distribution is unlikely in practice (!)

Karchmer (preprint, ’24): computational separation for average-case 
instances of task using a complexity-theoretic assumption: Hardness 
of Learning Parity with Noise.
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We want something even more “natural”, like a separation (meta-
distribution) that models MM learning from images and text.
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Separations imply Crypto Key Agreement

Bit agreement Alice and Bob exchange messages to agree on a single bit (w.h.p.) 
while Eve listens. Alice and Bob want to agree with higher probability than Eve can 
guess the bit given a transcript of the messages.
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<Main theorem> Any given computational separation can be directly repurposed 
as a Crypto KA.

Claim: MM Learning tasks encountered in practice — which are 
typical tasks within the support of a natural meta-distribution — are 
unlikely to present a computational advantage.

Heuristic argument: MM advantage in practice?

Implication: If a computational separation exists for a “natural” meta-
distribution, then that data can literally be used as messages in a 
cryptographic KA protocol. 

Karchmer (preprint, ’24): Let’s consider the reverse direction. What does an 
average-case multimodal computational separation imply? 



<Main theorem> Any given computational separation can be directly repurposed 
as a Crypto KA.

Moral of the story: We can use formal mathematical relationships 
between ML and Cryptography, to derive heuristics that inform us in 
the practice of ML…

Take Home Message
Karchmer (preprint, ’24): Let’s consider the reverse direction. What does an 
average-case multimodal computational separation imply? 



Take Home Message

<Main theorem> Any given computational separation can be directly repurposed 
as a Crypto KA.

Moral of the story: We can use formal mathematical relationships 
between ML and Cryptography, to derive heuristics that inform us in 
the practice of ML…

What else can this approach be 
applied to? 

Karchmer (preprint, ’24): Let’s consider the reverse direction. What does an 
average-case multimodal computational separation imply? 



Cryptography for Private ML
1. Crypto and Complexity to reason about the ML “real world” (15m)


2. Crypto to design data annotation algorithms that prevent 
information leakage about inductive bias (9m) 

3. Mining complexity theory results for technical machinery (6m)


4. Future directions + Q & A (15m)



Active Query 
learning

Canetti-Karchmer (TCC, ’21); Karchmer (SaTML, ’23)
Cryptography for Private ML: Covert Learning



Information about 
concept f

Information about h 
(inductive bias)

Information about 
outcome (did we get 
small loss?)

Canetti-Karchmer (TCC, ’21); Karchmer (SaTML, ’23)
Cryptography for Private ML: Covert Learning

Covert Learning 
solves this!
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Cryptography for Private ML: Covert Learning

• How is Covert Learning defined?
Enforce “simulatable” queries.

Active Query 
learning

From the simulation paradigm of 
zero-knowledge proofs  
(Goldwasser-Micali-Rackoff, 1985)

Canetti-Karchmer (TCC, ’21); Karchmer (SaTML, ’23)



Cryptography for Private ML: Covert Learning
Canetti-Karchmer (TCC, ’21); Karchmer (SaTML, ’23)

Exists simulator that  
generates “fake” queries “Real” queries which are 

influenced by inductive bias and  
adaptive decision making

Active Query 
learning

• How is Covert Learning defined?
Enforce “simulatable” queries.

IP + inductive bias z



Covert Learning Positive Results
Canetti-Karchmer (TCC, ’21); Karchmer (SaTML, ’23)

• Noisy parities Canetti-Karchmer (TCC, ’21)


• Small decision trees Canetti-Karchmer (TCC, ’21) 


• K-juntas Canetti-Karchmer (TCC, ’21); Karchmer (SaTML, ’23)


• Fourier-sparse functions Jawale-Holmgren (ITC, ’23)


• Coming soon? Hidden statistical queries Anand-Caro-Karchmer-Mutreja

In several model variants (e.g. distribution-specific, level of security)



Complexity theory  ML⟶
1. Crypto and Complexity to reason about the ML “real world” (15m)


2. Crypto to design data annotation algorithms that prevent information 
leakage about inductive bias (9m)


3. Mining complexity theory results for technical machinery (6m) 

4. Future directions + Q & A (15m)



Complexity theory  ML (???)⟶

• Complexity is about lower bounds (hardness)


• ML—algorithms broadly— is about upper bounds (easiness)


• How can hardness results help us get easiness?



Mining Complexity Theory

• The secret—look inside proofs


• Complexity (and cryptography) are famous for reductions 

• Fundamentally, reductions are algorithms 

• More broadly, constructive proofs are algorithms

NP completeness
Security proofs

Existence proofs



• Carmosino-Impagliazzo-Kabanets-Kolokolova 
(CCC, 2016): merely distinguishing structure 
from randomness is enough to learning the 
circuit! 


• This algorithm uses queries and only works w.r.t. a 
uniform distribution over unlabelled examples.

Natural Proofs

• P/poly vs NP — the million dollar problem (“millennium prize”)


• Razborov-Rudich (JCSS, 1997): “Natural Proofs” are lower 
bounds for circuits that encode algorithms which “tell apart” 
structured functions from random functions.


Best Paper Award!



Natural Proofs  Learning from Data⟶
• We wish we could get such 

a result for “learning from 
random data”  

• A beautiful way to show 
that machine learning 
theory is central to modern 
complexity theory• Carmosino-Impagliazzo-Kabanets-Kolokolova 

(CCC, 2016): merely distinguishing structure 
from randomness is enough to learning the 
circuit! 


• Learning uses queries and only works w.r.t. a 
uniform distribution over unlabelled examples

Best Paper Award!



Natural Proofs  Learning from Data⟶
• Karchmer (ITCS, 2024): Consider a restricted 

class of natural proofs. Then we get learning from 
random data — for the average concept


• Introduces a new model of non-worst case 
learning, with plenty of independent benefits

Best Student Paper Award!

Coexists with 
cryptographyAverage-case Boosting



Natural Proofs  Learning from Data⟶
• Karchmer (ITCS, 2024): Consider a restricted 

class of natural proofs. Then we get learning from 
random data — for the average concept


• Introduces a new model of non-worst case 
learning, with plenty of independent benefits

Best Student Paper Award!

Karchmer (ITCS, 2024): Use existing complexity lower bounds 
to derive novel algorithms for PAC-learning distributions over 
convex bodies and depth 2 threshold networks (bounded weights) 



Natural Proofs  Agnostic Learning and Compression⟶

• Karchmer (ALT, 2024): Consider the same 
restricted class of natural proofs


• Use them to obtain new agnostic learning and 
compression algorithms for small circuits with 
threshold gates (~DNNs)


• Continues a line of study initiated by Servedio-Tan 
(ITCS, 2017) on “nontrivial learning”/compression 
from lower bounds 



Cryptography and complexity theory  
in the design and analysis of  
machine learning

• More ways of using Crypto and Complexity 
to heuristically reason about ML


• Used fine-grained crypto to 
understand more natural multimodal 
ML separations (Lavigne et al., 
CRYPTO 2019)


• Planted statistical problems could be 
the key

Future directions.



Cryptography and complexity theory  
in the design and analysis of  
machine learning

• Applications of Covert Learning to AI Safety


• AI Jailbreaking

Future directions.

• Can we show that: Covert Learning 
provides a way to interact with an AI 
model undetectably?                                           
-  Inherently unalignable?


• Current “suffix optimization” LLM 
jailbreaks are not undetectable (e.g. Zou 
et al., 2023)



This talk: how, and when, can crypto or complexity 
positively impact ML?

Thanks for listening! Q+A —Ari Karchmer

Boston University

• Both crypto and complexity can help us reason about the ML 
“real world” (e.g., why is training on text and images more 
effective than training on just text?) 


• Crypto can help us design more secure and private ML 
algorithms


• Complexity theory can give us technical machinery for faster 
and more robust ML algorithms


