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Model Stealing (Tramer et al., USENIX 2016)



Motivation for Model Stealing

* Models can be proprietary, worth a lot of money.
* “White-box” privacy attacks are more effective.

* |f you can steal the model, you have a better chance at membership
Inference, constructing adversarial examples.
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Defenses Against Model Stealing

®* |Inject noise Iin order to limit amount of info revealed per query.
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® Sacrifices accuracy.



Observational Defenses (ODs) Against Model Stealing

If the queries are “suspicious,”
then I’ll ban the client.
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Observational Defenses (ODs) Against Model Stealing

* Example: Queries are “suspicious” when ML model owner
. can learn a good “proxy model” from them.
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Observational Defenses (ODs) Against Model Stealing

* Example: Queries are “suspicious” when ML model owner
. can learn a good “proxy model” from them.
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If the queries are “suspicious,”
then I’ll ban the client.
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Polynomial time

®* This was one of the first proposed defenses. See e.g.
“Extraction Monitor’ (Kesarwani-Mukhoty-Arya-Mehta, 2018).



When are ODs effective?

* Example: A sparse linear model w with a noisy defense.
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When are ODs effective?

* Example: A sparse linear model w with a noisy defense.

* What happens if you try to steal the model the simple way? (Majority Voting)
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When are ODs effective?

* Example: A sparse linear model w with a noisy defense.

* What happens if you try to steal the model the simple way? (Majority Voting)
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are suspicious, because they recovered the '
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When are ODs effective?

* Example: A sparse linear model w with a noisy defense.

* What happens if you try to steal the model the simple way? (Majority Voting)

OD: | g OF Oy

Model Owner conducts the a majority vote | 0 0 . 6 0 0
to recover linear model. :
This shows the Model Owner that the queries O e : 0 00

are suspicious, because they recovered the 0 '
model. 01 0 %0

The Model Owner can choose not to serve

these queries. : l.
. . —h
Design of ODs is very “cat-and-mouse”




Essence of ODs
(Karchmer, SaTML '23)

* Can we think about ODs more abstractly?
* Fundamentally, ODs are meant to confine clients to specific “safe” query distributions.
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Essence of ODs
(Karchmer, SaTML '23)

®* Can we think about ODs more abstractly?

* Fundamentally, ODs are meant to confine clients to specific “safe” query distributions.

* An OD performs a statistical test that classifies clients as adversarial or benign.

* This implicitly assumes that some query distributions are inherently “secure.”
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* This implicitly assumes that some query distributions are inherently “secure.”

* The right way to think about this is to take a cue from Cryptographic and ML Theory.

* Can we prove OD security via a complexity-theoretic reduction?

“If there exists an adversary that steals a model in the presence of a specific OD, then
there also exists a learning algorithm that refutes a cryptographic assumption or

constitutes a breakthrough in ML theory”




Essence of ODs
(Karchmer, SaTML '23)

* The right way to think about this is to take a cue from Cryptographic and ML Theory.

®* Can we prove OD security via a complexity-theoretic reduction?

“If there exists an adversary that steals a model in the presence of an OD, then there
exists a learning algorithm that refutes a cryptographic assumption or constitutes a

breakthrough in ML theory”
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Can we implement ODs efficiently?
(Karchmer, SaTML '23)

®* Can we prove OD security via a complexity-theoretic reduction?

* We can invent reductions, or treat OD security as a hardness of learning assumption itself (this is

what OD proposals do!).
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®* Can we prove OD security via a complexity-theoretic reduction?

®* We can invent reductions, or treat OD security as a hardness of learning assumption itself (this is

what OD proposals do!).

* Today: can we efficiently implement ODs that accept the uniform distribution over client queries?
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Can we implement ODs efficiently?
(Karchmer, SaTML '23)

®* Can we prove OD security via a complexity-theoretic reduction?

®* We can invent reductions, or treat OD security as a hardness of learning assumption itself (this is

what OD proposals do!).

* Today: can we efficiently implement ODs that accept the uniform distribution over client queries?
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* Example: PRADA (Juuti et al., EuroS&P ‘19)



Why the uniform distribution?
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* Example: PRADA (Juuti et al., EuroS&P ‘19)

* For the noisy linear model, use an OD to force the
client to use uniform qgueries.

* This is provably a good strategy: LPN assumption.




“Low noise” LPN
(Blum-Furst-Kearns-Lipton, 1993)

Uniformly random matrix

* Error bits are 1 with probabillity
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Negative Result
(Canetti-Karchmer, TCC ’21); (Karchmer, SaTML, ‘23)

* Today: can we efficiently implement ODs that accept the uniform distribution over client queries?

* Not really! (At least not for some types of ML models)

* Why? We can design efficient learning algorithms that uses “pseudo-random” queries.
(Canetti-Karchmer, TCC ’21); (Karchmer, SaTML, ‘23)

Pseudo-random queries

Queries drawn from a distribution that cannot be “distinguished” from uniformly random

queries, by any polynomial time statistical test.
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Stealing a noisy linear model
(Canetti-Karchmer, TCC ’21); (Karchmer, SaTML, ‘23)

* How to steal a linear model with pseudo-random queries? use LPN to “mask” the simple

voting method. R
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* How to steal a linear model with pseudo-random queries? use LPN to “mask” the simple

voting method.
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These queries ¢g; are the
“voting” queries.

Stealing a noisy linear model
(Canetti-Karchmer, TCC ’21); (Karchmer, SaTML, ‘23)

Query generation:

Sample random 7n X n matrix A.

For every query g; € {0,1}" that we
want to make,

Compute a mask by s;.A + v; where
s., v; € 1{0,1}" are sampled according
to the low-noise LPN distribution.

The queries will be g; + s;A + v; and
also the rows of A.

Addition modulo 2

—

—




* How to steal a linear model with pseudo-random queries? use LPN to “mask” the simple

voting method.

_—

These queries ¢g; are the
“voting” queries.

Low-noise LPN assumption
Implies that these queries are

pseudo-random, as long as s;
are kept secret.

(Katz-Shin-Smith, EuroCrypt ‘06)

Stealing a noisy linear model
(Canetti-Karchmer, TCC ’21); (Karchmer, SaTML, ‘23)

Query generation:

Sample random 7n X n matrix A.

For every query g; € {0,1}" that we
want to make,

Compute a mask by s;.A + v; where
s., v; € 1{0,1}" are sampled according
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Stealing a noisy linear model
(Canetti-Karchmer, TCC ’21); (Karchmer, SaTML, ‘23)

~ use LPN to “mask” the simple

voting method.

* How to learn from “masked” queries? “Decode” using knowledge of s; used to mask it query.
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Stealing a noisy linear model
(Canetti-Karchmer, TCC ’21); (Karchmer, SaTML, ‘23)

* How to steal a linear model with pseudo-random queries? use LPN to “mask” the simple

voting method.

* How to learn from “masked” queries? “Decode” using knowledge of s; used to mask it query.
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Stealing a noisy linear model
(Canetti-Karchmer, TCC ’21); (Karchmer, SaTML, ‘23)

* How to learn from “masked” queries? “Decode” using knowledge of s; used to mask i query.
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Stealing a noisy linear model
(Canetti-Karchmer, TCC ’21); (Karchmer, SaTML, ‘23)

* How to learn from “masked” queries? “Decode” using knowledge of s; used to mask i query.
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Stealing a noisy linear model
(Canetti-Karchmer, TCC ’'21); (Karchmer, SaTML, ‘23)

* How to learn from “masked” queries? “Decode” using knowledge of s; used to mask i query.
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®* The decoding “recovers” the voting queries. Therefore, after decoding, we can use majority

voting to learn w.






Moral of the story

(Canetti-Karchmer, TCC ’21); (Karchmer, SaTML, ‘23)

* Any polynomial time OD which accepts the uniform distribution is provably insecure when

deployed on a noisy linear model.

* Why? Because if it accepts uniformly random queries, then it must accept clients that use

pseudo-random queries + there exist pseudo-random clients that steal the model.
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Further Negative Results
(Canetti-Karchmer, TCC ’21); (Karchmer, SaTML, ‘23)

* Any polynomial time OD which accepts the uniform distribution is

provably insecure when deployed on a polynomial size decision tree.
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Further Negative Results
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Covert Learning (Canetti-Karchmer, TCC’21)

* Active learning with queries and and curious adversary.




Covert Learning (Canetti-Karchmer, TCC’21)

* Active learning with queries and and curious adversary.

* Queries are actively chosen ‘\‘é""?ﬁ — fo,\?)
based on some inductive P P i %5 )‘
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®* This prompts the question of
whether we can pseudo-randomize
the choice of active queries to hide

our sensitive inductive bias.







Covert Learning (Canetti-Karchmer, TCC’21)
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Locally Covert Learning wawale-Hoimgren, Itc23)

®* Adversary can choose only one

oracle to monitor.




Sybil Stealing

® Corresponds to “sybil” attacks in model stealing.
* A sybil attack uses many colluding adversaries to steal the model in the presence of an OD.

* The sybil attack would rely on the colluding

adversaries being unknown to the OD.

* The OD processes the adversaries queries

separately, since the collusion is unknown.

This makes things a bit easier.



Negative Results with Sybils

(Canetti-Karchmer, TCC ’21); (Karchmer, SaTML, '23)
(Jawale-Holmgren, ITC23)

* (Jawale-Holmgren, ITC’23) give a locally covert algorithm for Fourier-sparse functions.
This algorithm Is also perfectly covert — meaning that it generates two sets of queries

which are uniformly random when viewed independently.



Negative Results with Sybils

(Canetti-Karchmer, TCC ’21); (Karchmer, SaTML, 23)
(Jawale-Holmgren, ITC‘23)

* (Jawale-Holmgren, ITC’23) give a locally covert algorithm for Fourier-sparse functions.
This algorithm Is also perfectly covert — meaning that it generates two sets of queries

which are uniformly random when viewed independently.

!

* Any unbounded time OD which accepts the uniform distribution is provably insecure

with respect to a 2-sybil attack, when deployed on a Fourier-sparse model.

* In this case, one would think an OD accepting the uniform distribution would be

secure due to LPN-hardness.
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Future Direction: Al Jailbreaking vs. Covert Learning

(Zou et al., 2023)
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* Should Al model respond to client?

* Alignment? Al needs to predict, given
queries (and what it knows about the
world), whether client will compute
something “it isn’t supposed to.”

* |f Al queries are distributed similarly to the
training data, then Al will fundamentally
struggle to decide whether it should
respond or not.

* We should use Covert Learning to understand
when/if Al could be un-alignable.
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® Assume Iit’s hard to generalize data to
compute new problem instance — need Al

queries.



Thanks for listening!

®* Covert Learning prevents unintended leakage in active query learning.

* Observational Defenses for model stealing implicitly assume that certain query
distributions are secure.

* This means Covert Learning can perform undetectable model stealing attacks.

* In general, Covert Learning methods indicate its possible to interact with
models in nefarious, but “covert” ways.

* What does this mean for alignment?
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