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Natural Proofs:  
where we gain more than “just” a theorem!



A style or type of circuit lower bound  

All known circuit lower bounds at the 
time were natural proofs, or could be 
made so 

Natural Proofs (Razborov-Rudich, 1997)



Natural Proofs (Razborov-Rudich, 1997)

Why care? We should understand 
whether this technique could be used to 
separate P and NP, or whether other 
techniques are needed. 

Precedent for concern: Baker, Gill and 
Solovay’s prior work on relativizing proofs

A style or type of circuit lower bound  

All known circuit lower bounds at the 
time were natural proofs, or could be 
made so 



Natural Proofs (Razborov-Rudich, 1997)



Natural Proofs and Properties
(Razborov-Rudich, 1997)  

Lower bounds that encode algorithms

Natural Proofs of lower bounds  
against circuit class  identify Natural Properties  Λ

Large:  is at least 1/4 the size of  Qn Fn

Useful: If , then  f ∈ Λn f ∉ Qn

Constructive: The predicate 
“is ” can be computed in polynomial  
time (in the size of the truth table)

f ∈ Qn
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Natural Proofs of lower bounds  
against circuit class  identify Natural Properties  Λ

Large:  is at least 1/4 the size of  Qn Fn

Useful: If , then  f ∈ Λn f ∉ Qn

Constructive: The predicate 
“is ” can be computed in polynomial  
time (in the size of the truth table)
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This is the algorithm
Hard functions live here

Natural Proofs and Properties



Power of Natural Properties
A distinguisher? 

Natural Proofs of lower bounds  
against circuit class  identify Natural Properties  Λ

Large:  is at least 1/4 the size of  Qn Fn

Useful: If , then  f ∈ Λn f ∉ Qn

Constructive: The predicate 
“is ” can be computed in polynomial  
time (in the size of the truth table)

f ∈ Qn

This is the algorithm



Natural Proofs
(Razborov-Rudich, 1997)  

Lower bounds that are self-defeating

Natural Proofs of lower bounds  against circuit class  break strong one-way functions 
(And basically all of cryptography)  

P/poly

Large:  is at least 1/4 the size of  Qn Fn

Useful: If , then  f ∈ P/poly f ∉ Qn

Constructive: The predicate 
“is ” can be computed in polynomial  
time (in the size of the truth table)

f ∈ Qn

This is the algorithm

Sketch:  

OWF —> PRF (HILL, `99 / GGM, `86) 

Large implies that a random truth table is 
accepted by the property with probability > 1/4 

Useful implies that PRFs are never accepted  

Constructive implies that given query access 
to the PRF, we can actually run the algorithm 
efficiently
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Learning from Natural Proofs
(Carmosino-Impagliazzo-Kabanets-Kolokolova, 2016)

Natural Proofs of lower bounds  against circuit class  imply that  is learnable. 
This is stronger than just breaking PRF. 

P/poly P/poly

Sketch:  

Use queries to map the unknown function to 
a truth table TT. Queries are derived from NW-
generator (Nisan-Wigderson, 1994) 
—very intricate. 

Large, Useful and 
Constructive implies that given query access 
to the the table, we can run the natural proof to  
obtain a distinguisher for TT, which then becomes  
A learning algorithm by unwinding NW.
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Learning from Natural Proofs
(Carmosino-Impagliazzo-Kabanets-Kolokolova, 2016)

Open Question:  
 

Can we use “random examples”—not 
queries— and can we get  that doesn’t 
contain ?  

Λ
𝖠𝖢0[2]

•Uses very intricate queries stemming from 
hardness amplification procedures and Nisan-
Wigderson generator


•Hypothesis circuit only approximates over the 
uniform distribution (from hardness 
amplification procedure) 


•Only applies to  that contains  
(constant depth, unbounded fan-in, And/Or/
Not circuit


•An artifact of the proof of CIKK — Nisan-
Wigderson generator is -local but 
not -local s with MOD2 gates)

Λ 𝖠𝖢0[2]

𝖠𝖢0[2]
𝖠𝖢0



PAC-learning (original model)
Unlabelled examples  are sampled according to any unknown distributionx ∈ {0,1}n

 (arbitrary)x ∼ ρ

x ∼ ρ



Open Question:  

Let  be any circuit class. Do Natural Proofs useful against 
-circuits of size exp(n) imply polynomial time learning algorithms 
for poly(n) size -circuits, in the original PAC-learning model?

Λ Λ

Λ

Open Question, Rephrased



Let  be any circuit class. Do Natural Proofs useful against 
-circuits of size exp(n) imply polynomial time learning algorithms 
for poly(n) size -circuits, in the original PAC-learning model?

Λ Λ

Λ

Probably not!  
And this follows from a simple but under-the-radar observation. 



So why probably not? 

Let  be any circuit class. Do Natural Proofs useful against 
-circuits of size exp(n) imply polynomial time learning algorithms 
for poly(n) size -circuits, in the original PAC-learning model?

Λ Λ

Λ

Nisan (1993) proved lower bounds against exponential size depth-2 majority 
circuits 

Nisan’s proof is Natural. (If you look hard, you can find references to this as 
early as (Raz, 2000), but we are the first to explicitly formalize) 
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But: Klivans-Sherstov (2009) show that depth-2 majority circuits are not 
PAC-learnable, under Lattice-based cryptographic assumptions. 

“Yes, for every ” breaks crypto!Λ

Skipping this today 

Nisan (1993) proved lower bounds against exponential size depth-2 majority 
circuits 

Nisan’s proof is Natural. (If you look hard, you can find references to this as 
early as (Raz, 2000), but we are the first to explicitly formalize) 



So why probably not? 

Let  be any circuit class. Do Natural Proofs useful against 
-circuits of size exp(n) imply polynomial time learning algorithms 
for poly(n) size -circuits, in the original PAC-learning model?

Λ Λ

Λ

But: Klivans-Sherstov (2009) show that depth-2 majority circuits are not 
PAC-learnable, under Lattice-based cryptographic assumptions. 

“Yes, for every ” breaks crypto!Λ

Nisan (1993) proved lower bounds against exponential size depth-2 majority 
circuits 

Nisan’s proof is Natural. (If you look hard, you can find references to this as 
early as (Raz, 2000), but we are the first to explicitly formalize) 

We can start by considering 
Nisan’s natural proofs 
specifically.

So, what kind of learning 
can we “reasonably” expect 
to follow from natural 
proofs, in full generality?



Nisan’s natural proofs

So what is Nisan’s natural proof method? 



Nisan’s natural proofs

So what is Nisan’s natural proof method? 

Isolate a function F with very high communication complexity like  in 2-party randomized model 
There are many such functions (e.g. Inner product mod 2) 

Consider the candidate circuit class  you would like to prove the lower bound for.  

1. Show that every Ckt in  (size s(n)) has a CC protocol of complexity k(s(n)) 
2. Conclude that F does not have -circuits of size g(n), where g(k(s(n))) = !  ….. (By contradiction) 

Ω(n)

Λ

Λ
Λ Ω(n)



Nisan’s natural proofs

So what is Nisan’s natural proof method? 

E.g.: (Nisan, 1993). Depth-2 Maj-circuits of size s(n) have a randomized CC 
protocol of complexity k(s(n)) for k = O(log( . )) 

Thus, IPmod2 requires Depth-2 Maj-circuits of size exp( )! Ω(n)

Isolate a function F with very high communication complexity like  in 2-party randomized model 
There are many such functions (e.g. Inner product mod 2) 

Consider the candidate circuit class  you would like to prove the lower bound for.  
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2. Conclude that F does not have -circuits of size g(n), where g(k(s(n))) = !  ….. (By contradiction) 
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Informal main theorem of this work (K., 2024)

Consider what happens when s(n) := poly(n), 
and g(n) := exp(n) 

Any circuit class  (size s(n)), which has a g(n) lower bound via Nisan’s 
method, has a “Distributional PAC-learning” algorithm that runs in time  
exp(g (s(n))). 

Λ

−1



This gets around the impossibility by considering: 
a) Any p-samp distribution over concepts 
b) Complexity of evaluation of concepts, not concepts themselves 
c) Non-black box usage of lower bounds (Nisan’s specific techniques!)

Turns out this is essentially best possible, if you further inspect the hardness 
of learning result of (Klivans-Sherstov, 2009) 
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and g(n) := exp(n) 
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exp(g (s(n))). 

Λ

−1
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Turns out this is essentially best possible, if you further inspect the hardness 
of learning result of (Klivans-Sherstov, 2009) 

Consider what happens when s(n) := poly(n), 
and g(n) := exp(n) 

Any circuit class  (size s(n)), which has a g(n) lower bound via Nisan’s 
method, has a “Distributional PAC-learning” algorithm that runs in time  
exp(g (s(n))). 

Λ

−1

Recall concrete example: depth-2 majority-
circuits of size poly(n) have and exp(n) lower 
bound.

Informal main theorem of this work (K., 2024)



Distributional PAC-learning (K., 2024)
Just like PAC-learning, but “Bayesian”



Distributional PAC-learning (K., 2024)
Just like PAC-learning, but “Bayesian”

There are lots of independent benefits of distributional PAC-learning!

•  it allows black-box boosting (Schapire 1990) 
• other avg-case learning models do not 

•  still related well to theory of cryptography
•  (Kearns-Valiant, 1994) hardness still goes through

•  we can consider interesting   anyways
• Hardness with fixed  (p-samp) implies OWFs 

f ∼ μ
x ∼ ρ



Distributional PAC-learning (K., 2024)
Just like PAC-learning, but “Bayesian”

There are lots of independent benefits of distributional PAC-learning!

•  it allows black-box boosting (Schapire 1990) 
• other avg-case learning models do not 

•  still related well to theory of cryptography
•  (Kearns-Valiant, 1994) hardness still goes through

•  we can consider interesting   anyways
• Hardness with fixed  (p-samp) implies OWFs 

f ∼ μ
x ∼ ρ

Change the rules so cryptographers 
 and learners can both win!!



Ruling out weak PRFs with distPAC-learning (K., 2024)
Even with encoded inputs

Left out so far is that CIKK16 actually invokes their implication from natural 
proofs to query learning using the existing natural proofs against  by 
(Razborov-Smolensky, 1987) 

𝖠𝖢0[p]

Open Question 
Let  be any circuit class. Do Natural Proofs useful against -circuits of 
size exp(n) imply polynomial time learning algorithms for poly(n) size 
-circuits, in the original PAC-learning model?

Λ Λ
Λ
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One of the motivations of Open Question is to perhaps rule out conjecture 
weak PRFs in  (Boyle et al., 2021)𝖠𝖢0[2]

DistPAC-learning is enough to rule out weak PRFs. Thus we invoke our 
theorem with Nisan’s natural proofs to rule out weak PRFs evaluatable by 
depth-2 majority circuits, in a very strong way.
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One of the motivations of Open Question is to perhaps rule out conjecture 
weak PRFs in  (Boyle et al., 2021)𝖠𝖢0[2]

DistPAC-learning is enough to rule out weak PRFs. Thus we invoke our 
theorem with Nisan’s natural proofs to rule out weak PRFs evaluatable by 
depth-2 majority circuits, in a very strong way.

Weak PRFs often suffice for crypto 
applications (whereas strong PRFs are 
overkill). There’s a well motivated 
research direction to find the absolute 
minimum hardware (e.g. size of low-
depth circuits) that compute wPRFs.



Ruling out weak PRFs with distPAC-learning (K., 2024)
Even with encoded inputs. Analogous to BIP+18

DistPAC-learning rules out weak PRFs. Thus we rule out encoded-input 
weak PRFs by depth-2 majority circuits, in a very strong way.
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Ruling out weak PRFs with distPAC-learning (K., 2024)
Even with encoded inputs

Left out so far is that CIKK16 actually invokes their implication from natural 
proofs to query learning using the existing natural proofs against  by 
(Razborov-Smolensky, 1987) 
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Λ Λ
Λ

One of the motivations of Open Question is to perhaps rule out conjecture 
weak PRFs in  (Boyle et al., 2021)𝖠𝖢0[2]

DistPAC-learning for       

remains open!
𝖠𝖢0[2]

DistPAC-learning is enough to rule out weak PRFs. Thus we invoke our 
theorem with Nisan’s natural proofs to rule out weak PRFs evaluatable by 
depth-2 majority circuits, in a very strong way.



Core technique (K., 2024)
Exploit HOW the natural proofs works.

Correlation bounds for randomized communication 
protocols (we provide a new application of this)

Any circuit class  (size s(n)), which has a g(n) lower bound via 
Nisan’s method, has a “Distributional PAC-learning” algorithm 
that runs in time exp(g (s(n))). 

Λ

−1

Recall informal theorem: 



Core technique (K., 2024)
Exploit HOW the natural proofs works.

Evaluation Functions:
 Eval(πf, x) → f(x)

Induces a concept class:
 CEval = {Eval(πf, ⋅ ) : πf ∈ {0,1}s(n)}

Concept distribution  is thus thought of as over μ  {0,1}s(n)

Correlation bounds for randomized communication 
protocols (we provide a new application of this)



Core technique (K., 2024)
Exploit HOW the natural proofs works.

Now let’s think of R2 norms of evaluation functions 

Eval : 
Input: string , string  
Take  
Output: 

r z
πf = μ(r), x = ρ(z)

f(x)

Fix μ(over concepts), ρ(over inputs)

Equivalent to sampling 
from  when  
are uniformly random 
strings 

μ / ρ r / z

Correlation bounds for randomized communication 
protocols (we provide a new application of this)





Pick a two neighboring hybrid  
distributions at random

In expectation, over this random choice, 
Taking the parity of the bits  

distinguishes them

This is true whenever  
the 2-party norm of Eval is large

e.g., greater than 1/poly(n)

Because the parity of random  
bits is in expectation 0, of course 

“Hybrid argument”
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e.g., greater than 1/poly(n)

Because the parity of random  
bits is in expectation 0, of course 

Can focus on the below 2 anyway. 
The expected parity of H4 is 0.

“Hybrid argument”

Given these 3 bits, we can predict the next 
using the distinguisher (or argue directly)



Pick a two neighboring hybrid  
distributions at random

In expectation, over this random choice, 
Taking the parity of the bits  

distinguishes them

This is true whenever  
the 2-party norm of Eval is large

e.g., greater than 1/poly(n)

Because the parity of random  
bits is in expectation 0, of course 

Can focus on the below 2 anyway. 
The expected parity of H4 is 0.
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Correlation of f with communication  
protocols with cost c (w.r.t. uniform) 

How do we know when 2-party norm is big?

Traditionally, Thm. 1.8 is used to prove that 
certain functions have little correlation with 2-
party protocols (w.r.t the uniform distribution 
over inputs) 

By estimating a (low) R2. 

So use contrapositive:

When Eval correlates well with low-
communication protocol, R2 is large!



Correlation of f with communication  
protocols with cost c (w.r.t. uniform) 

How do we know when 2-party norm is big?

Teacher

Student

πf ∼ μ

x ∼ ρ

c bits

𝔼
πf ,x

[Eval(πf, x) ⋅ b] ≥ γ

Concept evaluation game

γ ⋅ 2−c ≤ R2(Eval)

b



Where  is a fixed distribution  
over concepts

μ

Actually implementing this in the  
distributional PAC-Learning model

A randomized predictor with weak advantage ≈ γ2−c

-



Where  is a fixed distribution  
over concepts

μ

Actually implementing this in the  
distributional PAC-Learning model

A randomized predictor with weak advantage ≈ γ2−c

-

1) Apply sampling and testing to get a weak distPAC-learning 
algorithm that prints deterministic hypothesis circuits. 

2) Apply boosting (e.g. Schapire, 1990) to derive a  
“strong” learner over many rounds.



What can be evaluated with low communication?

Super simple example: 

Distributions over decision trees  
given an “Anchor” tree 

Evaluation function defined by  
Anchor tree reads from both 
the concept representation  
and the input 

Hence, the sampling of the concept 
representation natural induces  
a randomized pruning of the anchor, 
i.e., a distribution over decision trees 

Example concept distributions
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Example concept distributions
What can be evaluated with low communication?

Super simple example: 

Distributions over decision trees  
given an “Anchor” tree 

Evaluation function defined by  
Anchor tree reads from both 
the concept representation  
and the input 

Hence, the sampling of the concept 
representation natural induces  
a randomized pruning of the anchor, 
i.e., a distribution over decision trees 

Also:  
“Organic” distributions over: 

• Depth2 majority circuits 
• Intersections of halfspaces 
• DNFs



Future directions
Some obvious ones

• What other interesting “organic” distributions over concepts can be 
learned using this technique?


• Statistical study of distPAC-learning?


• distPAC-learning of AC0[2]?


