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Abstract

We introduce the notion of natural proof. We argue that
the known proofs of lower bounds on the complexity
of explicit Boolean functions in non-monotone models
fall within our definition of natural. We show based on
a hardness assumption that natural proofs can’t prove
superpolynomial lower bounds for general circuits. We
show that the weaker class of AC°-natural proofs which
is sufficient to prove the parity lower bounds of Furst,
Saxe, and Sipser; Yao; and Hastad is inherently inca-
pable of proving the bounds of Razborov and Smolen-
sky. We give some formal evidence that natural proofs
are indeed natural by showing that every formal com-
plexity measure which can prove super-polynomial lower
bounds for a single function, can do so for almost all
functions, which is one of the key requirements to a
natural proof in our sense.
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to be really hard such as the Riemann Hypothesis. Per-

haps the ultimate demonstration that P = NPisahard
problem would be to show it to be independent of set
theory (ZFC).

Another way to answer this question i1s to demon-
strate that known methods are inherently too weak to

solve problems such as P = NP. This approach was
taken in Baker, Gill, and Solovay [4] who used oracle
separation results for many major complexity classes to
argue that relativizing proof techniques could not solve
these problems. Since relativizing proof techniques in-
volving diagonalization and simulation were the only
available tools at the time of their work progress along
known lines was ruled out.

Instead, people started to look at these problems in
terms of non-uniform (= Boolean) complexity. Along
these lines, many (non-relativizing) proof techniques
have been discovered and used to prove lower bounds

A style or type of circuit lower bound

All known circuit lower bounds at the
time were natural proofs, or could be
made so
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problem would be to show it to be independent of set
theory (ZFC).

Another way to answer this question i1s to demon-
strate that known methods are inherently too weak to

solve problems such as P = NP. This approach was
taken in Baker, Gill, and Solovay [4] who used oracle
separation results for many major complexity classes to
argue that relativizing proof techniques could not solve
these problems. Since relativizing proof techniques in-
volving diagonalization and simulation were the only
available tools at the time of their work progress along
known lines was ruled out.

Instead, people started to look at these problems in
terms of non-uniform (= Boolean) complexity. Along
these lines, many (non-relativizing) proof techniques
have been discovered and used to prove lower bounds

A style or type of circuit lower bound

All known circuit lower bounds at the
time were natural proofs, or could be
made so

Why care? \We should understand
whether this technique could be used to
separate P and NP, or whether other
techniques are needed.

Precedent for concern: Baker, Gill and
Solovay’s prior work on relativizing proofs
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In this paper we introduce the notion of a natural
proof. We argue that all lower bound proofs for non-

monotone models known to us in non-uniform Boolean
complezity esther are natural or can be represented as
natural. We show that if a cryptographic hardness as-
sumption is true, then no natural proof can prove super-
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taken in Baker, Gill, and Solovay [4] who used oracle
separation results for many major complexity classes to
argue that relativizing proof techniques could not solve
these problems. Since relativizing proof techniques in-
volving diagonalization and simulation were the only
available tools at the time of their work progress along
known lines was ruled out.

Instead, people started to look at these problems in
terms of non-uniform (= Boolean) complexity. Along
these lines, many (non-relativizing) proof techniques
have been discovered and used to prove lower bounds

polynomaal lower bounds for general circuits.




Natural Proofs and Properties

(Razborov-Rudich, 1997)
Lower bounds that encode algorithms

Natural Proofs of lower bounds
against circuit class A identify Natural Properties

J,

Ser of h’q“ F:éo,l?\—) $or’

Large: (), is at least 1/4 the size of F,

Ol

Useful: f f€ A, thenf & O, Narur)  Propecty

Constructive: The predicate
“isf € Q,” can be computed in polynomial
time (in the size of the truth table)




Natural Proofs and Properties

(Razborov-Rudich, 1997)
Lower bounds that encode algorithms

Natural Proofs of lower bounds
against circuit class A identify Natural Properties

J,

Ser of h’q“ F:éo,l?‘\—? $or’

Large: (), is at least 1/4 the size of F,

Ol

Useful: f f€ A, thenf & O, Narural  Propecty

Constructive: The predicate
“isf € Q,” can be computed in polynomial
time (in the size of the truth table)

Hard functions live here

This is the algorithm



Power of Natural Properties

Natural Proofs of lower bounds

A distinguisher?

against circuit class A identify Natural Properties

Large: (), is at least 1/4 the size of F,

Useful: If f€ A ,thenf & O,

Constructive: The predicate
“isf € Q,” can be computed in polynomial
time (in the size of the truth table)

This is the algorithm
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Natural Proofs of lower bou
(And basically all of cryptog

Natural Proofs
(Razborov-Rudich, 1997)
Lower bounds that are self-defeating

raphy)

Sketch:

Large: (), is at least 1/4 the size of F,

Useful: If f € P/poly, then

Constructive: The predicate

sf € Q,” can be computed in polynomial
time (in the size of the truth table)

13

OWF —> PRF (HILL, 99/ GGM, 86)

/& 0O,

Large implies that a random tru
accepted by the property with p

h tab

robabl

nds against circuit class P/poly break strong one-way functions

e s
ity > 1/4

Useful implies that PRFs are never accepted

Constructive implies that given query access
=F, we can actually run the algorithm
efficiently

to the

This is the algorithm

B
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Learning from Natural Proofs

(Carmosino-Impagliazzo-Kabanets-Kolokolova, 2016)

Natural Proofs of lower bounds against circuit class P/poly imply that P/poly is learnable.
This Is stronger than just breaking PRF.

Sketch:
"\;%"1‘75“ — $0,13 i .
i - Use queries to map the unknown function to
Pe 1R # £6)] 26| 21-5 , a truth table TT. Queries are derived from NVV-
X F x~ U - / generator (Nisan-Wigderson, 1994)
q / —very intricate.

/ l (4.) //d
/ e Sor?” Large, Useful and

/ '}(m e Constructive implies that given query access
% / to the the table, we can run the natural proof to
obtain a distinguisher for TT, which then becomes

A learning algorithm by unwinding NW.




Learning from Natural Proofs

(Carmosino-Impagliazzo-Kabanets-Kolokolova, 2016)

Natural Proofs of lower bounds against circuit class P/poly imply that P/poly is learnable.
This Is stronger than just breaking PRF.
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fhat  oppro’ivrakes [ 08 witrasy



Learning from Natural Proofs

(Carmosino-Impagliazzo-Kabanets-Kolokolova, 2016)

A3 random seed s » Uses very intricate queries stemming from

. , A Qpreveie PRG imuse hardness amplification procedures and Nisan-
Forwexd:  Unknowm & v Breded Fr > N () Wigderson generator
Bockword:  Hypothesis b « — ’m‘mﬁ ) NW; (6 . Hy.pothes_is c.ircu.it only approximates over the
Wneind, HA T APPly  Nabwal uniform distribution (from hardness
o et h v & Property, ¥ Unwind  NW . :
consirochion fo Sbhean circush amplification procedure)
fhat apprO&\‘ch,\'bs f 0 witnagy
_ - Only applies to A that contains ACO[Z]
Open Question: (constant depth, unbounded fan-in, And/Or/
Not circuit
Can we use “random examples” —not - An artifact of the proof of CIKK — Nisan-
. , . . 0
queries— and can we get A that doesn'’t Wigderson generator is AC™[2]-local but

contain ACO[Z]? not AC"-local s with MOD2 gates)



PAC-learning (original model)

Unlabelled examples x € {0,1 }" are sampled according to any unknown distribution

\,‘;%0,\75“ — ?0,\%

Pe | Pe |h@# 500 sel 21-$

P L A A

X _

.};\N X ~ p (arbitrary)

l % /Lw fe L




Open Question, Rephrased

Open Question:

Let A be any circuit class. Do Natural Proofs useful against A
-circuits of size exp(n) imply polynomial time learning algorithms

for poly(n) size A-circuits, in the original PAC-learning model?



Let A be any circuit class. Do Natural Proofs useful against A
-circuits of size exp(n) imply polynomial time learning algorithms

for poly(n) size A-circuits, in the original PAC-learning model?

Prolbably not!
And this follows from a simple but under-the-radar olbservation.



Let A be any circuit class. Do Natural Proofs useful against A
-circuits of size exp(n) imply polynomial time learning algorithms

for poly(n) size A-circuits, in the original PAC-learning model?

SO why probably not”?

Nisan (1993) proved lower bounds against exponential size depth-2 majority
circuits

Nisan’s proof is Natural. (If you look hard, you can find references to this as
early as (Raz, 2000), but we are the first to explicitly formalize)




Let A be any circuit class. Do Natural Proofs useful against A
-circuits of size exp(n) imply polynomial time learning algorithms

for poly(n) size A-circuits, in the original PAC-learning model?

SO why probably not”?

Nisan (1993) proved lower bounds against exponential size depth-2 majority
circuits

Nisan’s proof is Natural. (If you look hard, you can find references to this as
early as (Raz, 2000), but we are the first to explicitly formalizg)

~
-~ n
ny
~
B

Skipping this today

But: Klivans-Sherstov (2009) show that depth-2 majority circuits are not
PAC-learnable, under Lattice-based cryptographic assumptions.

“Yes, for every /\” breaks crypto!



Let /A be any circuit class. Do Natural Proofs useful against A

-circuits of size exp(n) imply polynomial time learning algorithms

for poly(n) size A-circuits, in the original PAC-learning model? _~

y

4
/ So, what kind of learning

/
/
"

)
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SO why probably not”?

Nisanr
clrcult

S

(1993) proved lower bounds against exponential \\\

can we “‘reasonably” expect
to follow from natural
proofs, in full generality?

N
N

o~ —
o= — -

Nisan’s proof is Natural. (If you look hard, you can find feferences as
early as (Raz, 2000), but we are the first to explicitly formalize)
///’
But: Klivans-Sherstov (2009) show that depth-2 majorit / Wi .
| | ,/ e can start by considering
~AC-learnable, under Lattice-based cryptographic assy  Nisan’s natural proofs |
specifically.
“Yes, for every /\” breaks crypto! N\




Nisan’s natural proofs

So what is Nisan’s natural proof method?



Nisan’s natural proofs
So what is Nisan’s natural proof method?

Isolate a function F with very high communication complexity like £2(7) in 2-party randomized model
There are many such functions (e.g. Inner product mod 2)

Consider the candidate circuit class A you would like to prove the lower bound for.

1. Show that every Ckt in A (size s(n)) has a CC protocol of complexity k(s(n))
2. Conclude that F does not have A-circuits of size g(n), where g(k(s(n))) = (n)! ..... (By contradiction)



Nisan’s natural proofs
So what is Nisan’s natural proof method?

Isolate a function F with very high communication complexity like £2(7) in 2-party randomized model
There are many such functions (e.g. Inner product mod 2)

Consider the candidate circuit class A you would like to prove the lower bound for.

1. Show that every Ckt in A (size s(n)) has a CC protocol of complexity k(s(n))
2. Conclude that F does not have A-circuits of size g(n), where g(k(s(n))) = (n)! ..... (By contradiction)

—.0.: (Nisan, 1993). Depth-2 Maj-circuits of size s(n) have a randomized CC
protocol of complexity k(s(n)) for k = O(log( . ))

Thus, IPmod?2 requires Depth-2 Maj-circuits of size exp(£2(n))!



Informal main theorem of this work (K., 2024)

Any circuit class A (size s(n)), which has a g(n) lower bound via N

ISan

method, has a “Distributional PAC-learning” algorithm that runs ir

tim

)

S
>

exp(g_l(s(n))). Consider what happens when s(n) := poly(n),

and g(n) := exp(n)



Informal main theorem of this work (K., 2024)

)

Any circuit class A (size s(n)), which has a g(n) lower bound via Nisan’s
method, has a “Distributional PAC-learning” algorithm that runs in time

exp(g_l(s(n))). Consider what happens when s(n) := poly(n),
and g(n) := exp(n)

This gets around the impossibility by considering:

a) Any p-samp distribution over concepts

o) Complexity of evaluation of concepts, not concepts themselves

c) Non-black box usage of lower bounds (Nisan’s specific techniques!)

Turns out this is essentially best possible, it you further inspect the hardness
of learning result of (Klivans-Sherstov, 2009)




Informal main theorem of this work (K., 2024)

)

Any circuit class A (size s(n)), which has a g(n) lower bound via Nisan’s
method, has a “Distributional PAC-learning” algorithm that runs in time

exp(g_l(s(n))). Consider what happens when s(n) := poly(n),
and g(n) := exp(n)

This gets around the impossibility by considering:

a) Any p-samp distribution over concepts .

pb) Complexity of evaluation of concepts, not concepte=" i
c) Non-black box usage of lower bounds // »

/
, /' Recall concrete example: depth-2 majority-
Turns out this is essentially best possible, it yoy circuits of size poly(n) have and exp(n) lower /
of learning result of (Klivans-Sherstov, 2009) ‘\ bound.




Distributional PAC-learning (K., 2024)

Just like PAC-learning, but “Bayesian”

h:éo,\%“ — %0,\%
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Distributional PAC-learning (K., 2024)

Just like PAC-learning, but “Bayesian”

h:%o,\%h — %0,\%

|

1

h(+) # ’\:(*3]56
¢ L

There are lots of independent benefits of distributional PAC-learning!

* 1t allows black-box boosting (Schapire 1990)
* other avg-case learning models do not
e still related well to theory of cryptography
e (Kearns-Valiant, 1994) hardness still goes through
e we can consider interesting f ~ u anyways

e Hardness with fixed x ~ p (p-samp) implies OWFs



Distributional PAC-learning (K., 2024)

h:%o,\%h — %0,\%

70 IR O R

Py Yp: Pr | Pr [h(-[)#t?(v@]se

Change the rules so cryptographers

and learners can both win!!

1

Just like PAC-learning, but “Bayesian”

There are lots of independent benefits of distributional PAC-learning!

* 1t allows black-box boosting (Schapire 1990)
* other avg-case learning models do not
e still related well to theory of cryptography
_»° (Kearns-Valiant, 1994) hardness still goes through
e we can consider interesting f ~ u anyways
e Hardness with fixed x ~ p (p-samp) implies OWFs



Ruling out weak PRFs with distPAC-learning (K., 2024)

Even with encoded inputs
Open Question
Let A be any circuit class. Do Natural Proofs useful against A-circuits of

size exp(n) imply polynomial time learning algorithms for poly(n) size A
-circuits, in the original PAC-learning model?

eft out so far is that CIKK16 actually invokes their implication from natural

proofs to query learning using the existing natural proofs against ACO[p] by
(Razborov-Smolensky, 1987)
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Let A be any circuit class. Do Natural Proofs useful against A-circuits of

size exp(n) imply polynomial time learning algorithms for poly(n) size A
-circuits, in the original PAC-learning model?

eft out so far is that CIKK16 actually invokes their implication from natural

proofs to query learning using the existing natural proofs against ACO[p] by
(Razborov-Smolensky, 1987)

One of the motivations of Open Question is to perhaps rule out conjecture
weak PRFs in ACO[Z] (Boyle et al., 2021)

DIstPAC-learning is enough to rule out weak PRFs. Thus we invoke our
theorem with Nisan’s natural proofs to rule out weak PRFs evaluatable by
depth-2 majority circuits, in a very strong way.
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Even with encoded inputs
Open Question

Let A be any circuit class. Do Natural Proofs useful against A-circuits of

size exp(n) imply polynomial time learning algorithms for poly(n) size A
-circuits, in the original PAC-learning model?

eft out so far is that CIKK16 actually invokes their implication from natura\

poroofs to query learning using the existing natural proofs agamst ACY L by
(Razborov-Smolensky, 1987) _— N
\

o | | // Weak PRFs often suffice for crypto
One of the motivations of Open Question is to/ applications (whereas strong PRFs are

weak PRFs In ACO[Z] (Boyle et al., 2021) overkill). There’s a well motivated

\ research direction to find the absolute
\ minimum hardware (e.g. size of low-

DistPAC-learning is enough to rule out weak Pt depth circuits) that compute wPRFs. ~ _/
theorem with Nisan’s natural proofs to rule out W ~ |
depth-2 majority circuits, in a very strong way. e




Ruling out weak PRFs with distPAC-learning (K., 2024)

Even with encoded inputs. Analogous to BIP+18

CON
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N

DistPAC-learning rules out weak PRFs. Thus we rule out encoded-input
weak PRFs by depth-2 majority circuits, in a very strong way.
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DistPAC-learning rules out weak PRFs. Thus we rule out encoded-input
weak PRFs by depth-2 majority circuits, in a very strong way.




Rullng out weak PRFs with distPAC-learning (K., 2024)

/ XN Even with encoded inputs

N

\\
N\ . . -
\geful against A-circuits of
\thms for poly(n) size A

- : AC’2]
DistPAC-learning for C

\ remains open’ ) _ b , ,
\ /IKK16 actually invokes their implication from natural

mg using the existing natural proofs against ACO[p] by
o\ensky, 1987)

Open Qy
Let /¥
sizf

One of the motivations of Open Question Is to perhaps rule out conjecture
weak PRFs in ACO[Z] (Boyle et al., 2021)

DIstPAC-learning is enough to rule out weak PRFs. Thus we invoke our
theorem with Nisan’s natural proofs to rule out weak PRFs evaluatable by
depth-2 majority circuits, in a very strong way.




Core technique (K., 2024)

Exploit HOW the natural proofs works.

Correlation bounds for randomized communication

orotocols (we provide a new application of this) B I _ X\ i > ,(‘ ,,(
Definition 1.2 (2-party norm). For f : ({0,1}")? — {—1,1}, the 2-party norm of f is defined as @
Ro(f):= , B | ]| fai.2%) R (2)
1:L2,T1,To™ e1,60€{0,1} . \ \ o
__' .F(’(\ I%Z) ’F(X: ,X;‘

Recall informal theorem:

Any circuit class A (size s(n)), which has a g(n) lower bound via
Nisan’s method, has a “Distributional PAC-learning” algorithm
that runs in time exp(g_l(s(n))).




Core technique (K., 2024)

Exploit HOW the natural proofs works.

Correlation bounds for randomized communication
orotocols (we provide a new application of this) _

p—

Definition 1.2 (2-party norm). For f : ({0,1}")? — {—1,1}, the 2-party norm of f is defined as

Ry(f) := E | | G )

0 ,.0 .1
_61,626{0,1} _ ﬁ‘

1
Ty,Tq,x7,L5~Unp

Evaluation Functions:
Eval(z, x) — f(x)

Induces a concept class: 5
|
Cival = {Eval(z, - ) : 7, € {0,1}*™) %2 X,

Concept distribution y is thus thought of as over {0,1 }8(n)



Core technique (K., 2024)

Exploit HOW the natural proofs works.

Correlation bounds for randomized communication T~ M
orotocols (we provide a new application of this) —b

Definition 1.2 (2-party norm). For f : ({0,1}")? — {—1,1}, the 2-party norm of f is defined as

Ro(f):= E [ rf5,25?) (2)
| €1,62€{0,1} i TBzN,U

1
Ty,Tq,x7,L5~Unp

Now let’s think of R2 norms of evaluation functions
Fix u(over concepts), p(over inputs)

Eval :

Input: string r, string 7 | | N

Take 7 = p(r), x = p(2) Equwal/ent tohsamp}mg X,~ P X~ P
Output: f(x) \ romu / pwihenr/ g

are uniformly random
strings



Definition 1.2 (2-party norm). For f : ({0,1}")% — {—1,1}, the 2-party norm of f is defined as

11

_81,826{0,1}

0,0 ,.1
Ly3Lo, L7,

a:%NUn

ACTRESY

—

(2)




Definition 1.2 (2-party norm). For f : ({0,1}")% — {—1,1}, the 2-party norm of f is defined as

11

_81,826{0,1}

“Hybrid argument” Rz (/)

Pick a two neighboring hybrid
distributions at random

In expectation, over this random choice,
Taking the parity of the bits
distinguishes them

This is true whenever
the 2-party norm of Eval is large

e.g., greater than 1/poly(n)

Because the parity of random
bits Is in expectation 0, of course

— E

0,0 ,.1
Ly3Lo, L7,

a:%NUn

ACTRESY

(2)




Definition 1.2 (2-party norm). For f : ({0,1}")% — {—1,1}, the 2-party norm of f is defined as

“Hybrid argument” Ba(f) = xg,xg,ff:,x;wun

Pick a two neighboring hybrid
distributions at random

In expectation, over this random choice,
Taking the parity of the bits
distinguishes them

This is true whenever
the 2-party norm of Eval is large

e.g., greater than 1/poly(n)

Because the parity of random
bits is in expectation 0, of course

I f@5,28)

_81,826{0,1}

—

(2)

Can focus on the below 2 anyway.
The expected parity of H4 is 0.




Definition 1.2 (2-party norm). For f : ({0,1}")% — {—1,1}, the 2-party norm of f is defined as

“Hybrid argument” Baf)= o o B | 11 S22) 2)

_81,826{0,1}

Can focus on the below 2 anyway.
The expected parity of H4 is 0.

Pick a two neighboring hybrid Given these 3 bits, we can predict the next
distributions at random using the distinguisher (or argue directly)

In expectation, over this random choice,
Taking the parity of the bits
distinguishes them

— Ay
This is true whenever TR
the 2-party norm of Eval is large
e.g., greater than 1/poly(n) ;
s o=
Because the parity of random

bits Is in expectation 0, of course



Definition 1.2 (2-party norm). For f : ({0,1}")? — {—1,1}, the 2-party norm of f is defined as

“Hybrid argument”

Correlation of f with communication
protocols with cost ¢ (w.r.t. uniform)

Pick a two neighboring hybrid
distributions at random

In expectation, over this random choice,
Taking the parity of the bits
distinguishes them

This is true whenever
the 2-party norm of Eval is large

e.g., greater than 1/poly(n)

Because the parity of random
bits is in expectation 0, of course

Rz(f) = 0 E H

_51,626{031}

zV,x29,x1,23~U,

How do we know when 2-party norm is big?

f(xil ; xgz)

(2)

Can focus on the below 2 anyway.
The expected parity of H4 is 0.

N

Theorem 1.8 ( The corre

{—la 1},

ion bound

([CT93, Raz00, VWO07]). For every function f : ({0,1}")? —

Cor(f,I1[2,c]) = max

well[2,c]

for = uniformly distributed over ({0,1}™)?.

E

T

f(2) - m(2)]| < 2°- Ro(f)/*

(3)




Definition 1.2 (2-party norm). For f : ({0,1}")? — {—1,1}, the 2-party norm of f is defined as

Ray(f) =

0

1
xy,To,21,L5~Un

E I fG5,28)
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Correlation of f with communication
protocols with cost ¢ (w.r.t. uniform)

How do we know when 2-party norm is big?

—

Theorem 1.8 (The correlation pound — [CT93, Raz00, VWO07]). For every function f : ({0, l}’”’)“2 —

{_13 l}'

C I112.¢c|) = .
or(f, II2,¢]) = max

for = uniformly distributed over ({0,1}™")2.

E|[f(z) - w(2)]| <2°- Ry(f)"/*

(3)

(2)



Definition 1.2 (2-party norm). For f: ({0,1}")% — {—1,1}, the 2-party norm of f is defined as

Ro(f):= ,  E [T s ©)

1
xy . xe.xy.xa~U
1492yl 1349 n
_51,826{0,1}

Correlation of f with communication

protocols with cost ¢ (w.r.t. uniform) Traditionally, Thm. 1.8 is used to prove that
certain functions have little correlation with 2-

party protocols (w.r.t the uniform distribution
How do we know when 2-party norm is big?  over inputs)

Theorem 1.8 ( The correlation bound — [CT93, Raz00, VW07]). For every function f : ({0,1}")* —

{-1,1}, By estimating a (low) R2.

Cor(f,I1[2,¢]) = ﬂghqid lecl[f(J,) .w(z)]| < 2¢- Ry(f)V/* (3)

for = uniformly distributed over ({0,1}™")2.

SO use contrapositive:

When Eval correlates well with low-
communication protocol, R2 is large!




Definition 1.2 (2-party norm). For f: ({0,1}")% — {—1,1}, the 2-party norm of f is defined as

Ray(f) =

0

1
xy,To,21,L5~Un

E I fG5,28)

0 .1
_81,826{0,1}

Correlation of f with communication
protocols with cost ¢ (w.r.t. uniform)

How do we know when 2-party norm is big?

Theorem 1.8 (The correlation pound — [CT93, Raz00, VWO07]). For every function f : ({0, 1}7)?% -

{—1,1},

C I112,¢c|) = .
or(f, [(’]) ﬂgﬁ%d

for = uniformly distributed over ({0,1}™")2.

E[f(z) - n(a)]| < 2° - Ro(f)"/*

(3)

(2)

Concept evaluation game

Teacher
7'\

TTr X
cbits
\ 4

Student

X~p

|

Eval(z;,x) - b| > vy
¢

y-27° < R,(Eval)



Where u is a fixed distribution
OVEer concepts

Actually implementing this In the
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Actually implementing this In the
distributional PAC-Learning model

A randomized predictor with weak advantage =~ y2~°

Where i is a fixed distribution
OVEer concepts

1) Apply sampling and testing to get a weak distPAC-learning
algorithm that prints deterministic hypothesis circuits.

2) Apply boosting (e.g. Schapire, 1990) to derive a
“strong” learner over many rounds.



Example concept distributions

What can be evaluated with low communication?

Super simple example:

Distributions over decision trees

given an "Anchor” tree

Evaluation function defined by
Anchor tree reads from both
the concept representation

and the input

Hence, the sampling of tr

e concept

representation natural ind

UCES

a randomized pruning of the anchor,
.e., a distribution over decision trees
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Example concept distributions

What can be evaluated with low communication?

ANCHoR TRetE

Super simple example:

Distributions over decision trees

given an "Anchor” tree

Evaluation function defined by
Anchor tree reads from both
the concept representation

and the input

Hence, the sampling of tr
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representation natural ind
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.e., a distribution over decision trees
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Example concept distributions

What can be evaluated with low communication?

Super simple example:

Distributions over decision trees

given an "Anchor” tree

Evaluation function defined by
Anchor tree reads from both
the concept representation

and the input

Hence, the sampling of tr

e concept

representation natural ind

UCES

a randomized pruning of the anchor,
.e., a distribution over decision trees

ANCHoR TRetE



Example concept distributions

What can be evaluated with low communication?

Also:
“Organic” distributions over:

* Depth2 majority circuits
* Intersections of halfspaces
* DNFs



Future directions

Some obvious ones

» What other interesting “organic™ distributions over concepts can be
learned using this technique?

» Statistical study of distPAC-learning?

» distPAC-learning of ACO0[2]?



