
Ran Canetti, Ari Karchmer

Covert Learning:
How to learn with an untrusted intermediary

Covert Verifiable Learning Goals

• Learning: If Eve reports the experiment results truthfully, Alice learns a good model
from her experiments

• Concept-hiding: No (maybe, little) information about the molecular relationship is
leaked

• Hypothesis-hiding: No information about Alice's hypothesis or domain knowledge
used to influence the hypothesis is leaked

• Verifiability: If Eve tampers with the results, she cannot deceive Alice into learning a
faulty model (here let Alice have private access to some random ``ground truth"
experiments)

PAC-verification
[GRSY20]

• Learning: If Prover reports the
experiment results truthfully, Verifier
learns a good model a

• Concept-hiding a

• Hypothesis-hiding
a

• Verifiability: If Prover tampers with the
results, she cannot deceive Verifier
into learning a faulty model (here let
Verifier have private access to some
random ``ground truth" examples)

Cryptographic Sensing
[IKOS19]

• Learning: Sensor obtains an exact
model/object from the experiments
a

• Secrecy: Object remains hidden to an
adversary provided that it is drawn from a
distribution of sufficient minimum entropy
(entropic security)

• Hypothesis-hiding
a

• Verifiability

More Related Work
Or: what this talk is not about

• Differentially private learning [KLNRS11]

• Data privacy — not learner privacy

• Verifiable computation [K92, M00]

• Verify computation steps — not good learning outcomes

• Requires computational entity

Example Application: Drug Discovery

• How does A prevent trade secrets being revealed by experimental design?

• How does A prevent the lab from “double-selling” data to competitor?

• How does A prevent the lab from returning faulty data (say, given access

to some random ground truth examples)?

Example Application: Drug Discovery

• Cannot execute protocol with the lab

• A must reveal some experiments at some point, while the lab must read the

results at some point — no way around this

• We must design an algorithm that interacts only with “Nature”

• Q+A only

More applications

• Our work could be useful in any setting where we want to hide what we are
learning but can’t execute a protocol

• E.g. Model extraction attacks
Client tries to extract model by using active learning strategies

Contributions

• The Covert Learning model, which augments PAC learning with MQ with hiding guarantees

• Covert Learning algorithms for parity functions and decision trees (agnostic)

• The Covert Verifiable Learning model, which augments PAC learning with MQ with hiding and
verifiability guarantees

• Covert Verifiable Learning algorithms for parity functions and decision trees
(agnostic)

• Covert Verifiable Learning even with no privately accessed examples

• Covert Verifiable Learning algorithms for O(log n)-juntas with strong privacy and
verifiability (perfect, statistical)

Contributions Today

• The Covert Learning model, which augments PAC learning with MQ with hiding guarantees

• Covert Learning algorithms for parity functions and decision trees (agnostic)

• The Covert Verifiable Learning model, which augments PAC learning with MQ with hiding and
verifiability guarantees

• Covert Verifiable Learning algorithms for parity functions and decision trees
(agnostic)

• Covert Verifiable Learning even with no privately accessed examples

• Covert Verifiable Learning algorithms for O(log n)-juntas with strong privacy and
verifiability (perfect, statistical)

Itinerary

• Establish the Covert Learning model

• Covert Learning for noisy parities

• Covert Learning for heavy Fourier coefficients

• Establish the Covert Verifiable Learning model

• Transform Covert Learning into Covert Verifiable Learning

• Concluding questions and remarks

Alice’s task?
Learning with membership queries

• The structure-activity relationship is a boolean function

• Alice's initially hypothesized set of structure-activity models A hypothesis

class

• Experiments synthesized membership queries

f : {feature, ¬feature}n → {bind, ¬bind}

⟺

⟺

PAC Learning terminology
• For every , A hypothesis class is a class of functions

• For every is a concept class, where every is a distribution over

• For an example is an input, and is a label

• A loss function (w.r.t. a concept _n) quantifies how good a hypothesis

 is at approximating a concept. For instance misclassification error:

n ∈ ℕ ℋn ⊆ {f : {0,1}n → {0,1}}

n ∈ ℕ, 𝒟n Dn ∈ 𝒟n

{0,1}n × {0,1}

(x, y) ∼ Dn, x y

D ℒDn
: ℋn → [0,1]

h ∈ ℋ

ℒD(h) = Pr(x,y)∼D [h(x) ≠ y]

A hypothesis class is agnostic PAC learnable (w.r.t. concept class) if (roughly)

 There is an algorithm receiving enough examples so that:

For any concept ,

 outputs s.t.

H 𝒟n

A

D ∈ 𝒟n, ϵ, δ > 0

A h ∈ H Pr
A [ℒD(h) ≤ ℒD(H) + ϵ] ≥ 1 − δ

ℒD(H) = infh∈H ℒD(h)

Agnostic PAC Learning

• With membership queries: there is
also an oracle that allows the
learning algorithm to directly query
the concept

• Agnostic: need not contain a
perfect hypothesis for the concept

• has a big impact on the resulting
function which is output by
important choice, whatever is

H

H
A ⟶
H

• a collection of
hypothesis classes

• Learner input:

• Learner queries concept

• Learner outputs: for any
, a hypothesis such that

𝒞n = {Hi
n}i∈[m]

ϵ, δ < 1, Hn ∈ 𝒞n

Dn ∈ 𝒟n
h ∈ Hn

Pr
A [ℒD(h) ≤ ℒD(H) + ϵ] ≥ 1 − δ

The Covert Learning Model

• Adversary attempts to deduce
information about either the concept

 or the hypothesis class

• Objection: some concept classes we
cannot hide, e.g. the constant function

• Adversary could apply Occam learning

Dn ∈ 𝒟n
Hn ∈ 𝒞n

The Covert Learning Model

Occam Learning (informal) An
Occam learning algorithm is an
algorithm that, given any set of
examples to a concept, outputs a
hypothesis which is

1) consistent with all examples,

2) “succint”

There exists a p.p.t. simulator such

that for every

where (random examples of

).

Hn ∈ 𝒞n, Dn ∈ 𝒟n

{Sim(S)} ≈ {interaction transcript}
S ∼ Dn

Dn

The Covert Learning Model

Why allow the simulator to have random examples?

“Zero-knowledge-like” in the presence of public data set of
random examples

Many learning problems thought to be computationally
hard to learn from random examples (e.g. decision
trees, small depth circuits, parities with noise)

Random examples are the minimum leakage, not just a
result of the definition

Trivial example
Covert Learning is easy when PAC learning is possible

• Every is efficiently PAC learnable

• Covert Learning algorithm:

• Request a sufficiently large set of random examples from the oracle.

• Run the PAC learning algorithm.

• The simulator returns the random examples given as input.

• Examples: Constant term DNFs, parities (in the absence of noise).

Hn ∈ 𝒞n

Itinerary

• Establish the Covert Learning model

• Covert Learning for noisy parities

• Covert Learning for heavy Fourier coefficients

• Establish the Covert Verifiable Learning model

• Transform Covert Learning into Covert Verifiable Learning

• Concluding questions and remarks

Parities with no noise are trivial, so what about the

noisy case?

Focus on the concept hiding guarantee

Covert Learning for noisy parities

Covert Learning for noisy parities
LPN

• Search LPN: find s.

• Decision LPN: distinguish from uniformly random. Both are thought to be
subexponentially-hard

a, ⟨a, s⟩ ⊕ e

LPN distribution [BFKL92]:

Sample from Bernoulli r.v. with mean
constant

Sample uniformly at random

Return (is persistent over each example)

s ∈ {0, 1}𝑛, 𝑒 ∈ {0, 1}
p < 1/2

𝑎 ∈ {0, 1}𝑛

𝑎, ⟨𝑎, s⟩ ⊕ 𝑒 s

Covert Learning for noisy parities
Low-noise LPN

• Search LPN: find s.

• Decision LPN: distinguish from uniformly random. Both are thought to be
subexponentially-hard

a, ⟨a, s⟩ ⊕ e

Low-noise LPN distribution [Ale03]:

Sample from Bernoulli r.v. with mean

Sample uniformly at random

Return (is persistent over each example)

s ∈ {0, 1}𝑛, 𝑒 ∈ {0, 1}
p = 1/ n

𝑎 ∈ {0, 1}𝑛

𝑎, ⟨𝑎, s⟩ ⊕ 𝑒 s

Is there a covert learning algorithm for learning s?

Covert Learning for noisy parities

(actually, there exists a Covert Learning algorithm for noisy parities
unconditionally. Recall previous example.)

Theorem: (informal) If low-noise LPN is hard, then there exists a Covert
Learning algorithm for parities with respect to the low-noise LPN distribution

Learning noisy parities the leaky way
Covert

• Send pseudorandom queries

• Generate a pseudorandom mask for each query by using LPN
distribution

MASK1 MASK2 MASKn

Covert Learning for noisy parities

“Masked queries”

Query

Mask: low noise LPN sample

Covert Learning for noisy parities

Covert Learning for noisy parities

Random queries

Covert Learning for noisy parities

X-or lemma For , and random variables that are i.i.d. from Bernoulli r.v. with mean ,
we have that

μ ∈ [0, 1/2] E1 ⋯ Em μ

Pr [
m

⨁
i=1

Ei = 0] =
1
2

+
1
2

(1 − 2μ)m

Decoding procedure:

Noisy terms are biased to 0 w.p.
1
2

+ Ω(1) Repetition and majority voting to decode bit-by-bit

Can we covertly learn more
interesting concepts?

Itinerary

• Establish the Covert Learning model

• Covert Learning for noisy parities

• Covert Learning for heavy Fourier coefficients

• Establish the Covert Verifiable Learning model

• Transform Covert Learning into Covert Verifiable Learning

• Concluding questions and remarks

Boolean Fourier Analysis
Review

• Let . In particular, we care about functions

• For , we define by

• The Fourier expansion of is where is the Fourier

coefficient on

• Every function can be uniquely represented by its Fourier expansion

• We say that is “heavy” if , and the degree of is

f : 𝔽n
2 → ℝ f : 𝔽n

2 → {−1,1}

S ⊆ [n] χS : 𝔽n
2 → ℝ χS(x) = (−1)

∑
i∈S

xi

f : 𝔽n
2 → ℝ f(x) = ∑

S⊆[n]

̂f(S)χS(x) ̂f(S)

S

̂f(S) ̂f(S) ≥ 1/poly(n) ̂f(S) |S |

̂f(S)

Why Learn Fourier Coefficients?

• By definition,

• If we know such that , then we have a
hypothesis that agrees with on fraction of
inputs (just take)

• Good for learning w.r.t. uniform distribution

̂f(S) = 𝔼x[f(x)χS(x)]

S ̂f(S) ≥ τ
f 1/2 + τ/2

χS

• Finding all heavy Fourier coefficients of degree is strong enough to
efficiently learn -size decision trees. Not known in plain PAC learning
model

• Our goal: find (covertly) the Fourier coefficients of a function

O(log n)
poly(n)

O(log n)

0

0

0

0

0 0 01

1

1

1 1 1

1

Covert Learning of low degree Fourier coefficients

• Membership query bypasses distribution over inputs and returns

• Goal: find Fourier coefficients of while satisfying privacy guarantees

f : {0,1}n → {−1,1}

q f(q)

f

Covert Learning of low degree Fourier coefficients
Highlighting hypothesis-hiding

• Learner has a hypothesis (due to expert domain knowledge) that all heavy Fourier coefficients

of a function are contained in a subset .

• Valuable: this knowledge could improve the efficiency of a normal learning algorithm (e.g. KM

algorithm).

• Leaky: repeated restrictions of KM queries clearly reveals information on

• How to hide this expert domain knowledge?

T ⊆ [n]

T

Answer: do Covert Learning for collection of hypothesis classes, where each
hypothesis class in indexed by

Covert Learning then hides all information about

T ⊆ [n]

T

Theorem: (informal) Under the subexponential LPN
assumption, the collection of all low-degree Fourier
subsets is covertly learnable.

Covert Learning of low degree Fourier coefficients
Squared-log entropy assumption

• Extend the technique from the previous result: “masked queries"

• Need decisional LPN variant that provides super-polynomial

hardness with -bit secrets of just entropy (due to [YZ16])

• Variant implied by subexponential LPN: -hard with samples [YZ16]

(𝗌𝗊𝗅𝗈𝗀𝖫𝖯𝖭)

n Θ(log2(n))

2 n 2 n

Covert Learning of low degree Fourier coefficients

Covert Learning of low degree Fourier coefficients
Simulator

query 1

query m

Covert Learning of low degree Fourier coefficients

• Let

• For query , let (“masked query” technique)

• What can we say about ?

• Let be a randomized mapping defined , where s
is the secret used on the for , and is a random -bit string

𝗈𝗍𝗉 ∼ 𝗌𝗊𝗅𝗈𝗀𝖫𝖯𝖭n

q ∈ {0,1}n ̂q = q ⊕ 𝗈𝗍𝗉

f(̂q)

ϕ ϕ(f(̂q)) := f(̂q) ⋅ χs(r)
𝗌𝗊𝗅𝗈𝗀𝖫𝖯𝖭 𝗈𝗍𝗉 q r n

Lemma: If s.t. and , then there exists a small constant such that

In particular, if , then .

k ⊆ [n] |k | = O(log n) ̂f(k) ≥ τ c

𝔼
ϕ,q, ̂q [ϕ(f(̂q)) ⋅ χk(q)] ≥ Ω(τn−c)

̂f(S) ≥ 1/poly(n) 𝔼[ϕ(f(̂q))χk(q)] ≥ 1/poly(n)

• The lemma provides a “Goldreich-Levin type” environment

• The Goldriech-Levin reduction/algorithm gives a method for extracting a s.t.
 in time (w.h.p.)

𝔼
ϕ,q, ̂q [ϕ(f(̂q)) ⋅ χk(q)] ≥ Ω(τn−c)

k
̂f(k) ≥ τ poly(n, 1

τ)

Covert Learning of low degree Fourier coefficients

Noisy Predictor

Covert Learning of low degree Fourier coefficients

• Run the Goldreich-Levin algorithm in the
“masked query regime”

• Can run Goldreich-Levin on some subset of
interesting indices

• This encodes secret hypothesis

• Pseudorandomness hides

• At the end we obtained

T

T

S ∈ T : |S | ≤ O(log n) , ̂f(S) ≥ 1/poly(n)

Covert Learning of poly(n) size decision trees

Sufficient to produce an approximation to that is competitive with the optimal
-size decision tree approximating .

f poly(n)
f

Theorem: (informal) Under the subexponential LPN assumption, the collection
of all subsets of decision trees is covertly learnable.

Itinerary

• Establish the Covert Learning model

• Covert Learning for noisy parities

• Covert Learning for heavy Fourier coefficients

• Establish the Covert Verifiable Learning model

• Transform Covert Learning into Covert Verifiable Learning

• Concluding questions and remarks

Covert Verifiable Learning
A malicious adversary

• Interactive between the learner
and adversarial intermediary (AI)

• AI monitors access to the
membership oracle

• The learner request queries
from oracle, but responses my
be corrupted by AI

Covert Verifiable Learning
The verifiability guarantee

• Allow the learner to abort

• Access to set of uniformly
random “ground truth” examples

Goal: If AI chooses to corrupt, the learner should not output a faulty hypothesis

except with small probability (similar to soundness)

Verifiability for learning algorithm for collection

Inputs:

For any , any , any AI which corrupts
oracle responses,

We say that verifiability is computational if is p.p.t..

A 𝒞n

Hn ∈ 𝒞n, ϵ, δ, 𝒮

Dn ∈ 𝒟n Hn ∈ 𝒞n, 𝒮 ∼ Dm
n I

Pr [ℒ(A) > ℒ(Hn) + ϵ A ≠ abort] < δ

I

Covert Verifiable Learning
How to extend privacy?

Real:

Adversary (a distinguisher)
chooses

 is drawn from

Learner gets , AI gets

Learner tries to learn with access to oracle. AI sees the
learner's queries and responses and is given the chance to
modify the responses. At the end of interaction, AI outputs a
string denoted by

Output

Hn ∈ 𝒞n, Dn ∈ 𝒟n, ϵ, δ

𝒮 Dn

𝒮, Hn, ϵ, δ ϵ, δ

Hn

𝗋𝖾𝖺𝗅𝒟n
A,I

(Hn, ϵ, δ, 𝒮, 𝗋𝖾𝖺𝗅𝒟n
A,I)

Ideal:

Adversary (a distinguisher)
chooses

 is drawn from

Sim gets access to , where is the set of
examples given to the real learner. AI gets

Sim “interacts” with the oracle. AI “views” the queries and
responses and may change the responses. The simulator
outputs a string,

Output

Hn ∈ 𝒞n, Dn ∈ 𝒟n, ϵ, δ

𝒮′ Dn

𝒮, 𝒮′ , Hn, ϵ, δ 𝒮
ϵ, δ

𝗂𝖽𝖾𝖺𝗅Sim
I

(Hn, ϵ, δ, 𝒮, 𝗂𝖽𝖾𝖺𝗅Sim
I)

Itinerary

• Establish the Covert Learning model

• Covert Learning for noisy parities

• Covert Learning for heavy Fourier coefficients

• Establish the Covert Verifiable Learning model

• Transform Covert Learning into Covert Verifiable Learning

• Concluding questions and remarks

Augmenting Covert Learning with Verifiability

• The learner now has access to set of random examples — how to leverage?

• We have proved that the set of queries are pseudorandom

• Idea: Alternate “testing” and “learning”

S

Q {Q} ≈ {S}

Input: S = random examples

Repeat r times:
Flip coin c
If c = 0

covert_learn()
If c = 1

Query section of S
abort if results
inconsistent

Claim Suppose that on one iteration, w.p. , the AI can corrupt at least 1
oracle response without causing the learner to abort. Then the squared-log LPN
problem is efficiently solved with advantage .

 — Follows from the fact that AI is always caught lying in case c = 1

1/2 + ϵ

ϵ

• Eventually AI is caught or one round is an
uncorrupted “learning” phase

• Verifiability follows from learning
guarantee of basic Covert Learning
algorithm

Theorem: (informal) Under the subexponential LPN
assumption, the collection of all subsets of decision trees
is verifiably covertly learnable.

Theorem: (informal) Under the subexponential LPN
assumption, the collection of all subsets of low-degree
Fourier subsets is verifiably covertly learnable.

Next Questions

• Can we obtain more Covert Learning algorithms (e.g. new learning problems, large fields, real
numbers)?

• In the verifiability setting, can we remove the assumption of privately accessed dataset? (Yes, if we
relax the fully agnostic setting)

• When is there a general compiler for turning plain PAC learning with MQ algorithms into Covert
(Verifiable) Learning algorithms?

Little questions

Big question

Thank you

