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Covert Verifiable Learning Goals

• Learning: If Eve reports the experiment results truthfully, Alice learns a good model 
from her experiments                                       


• Concept-hiding: No (maybe, little) information about the molecular relationship is 
leaked                    


• Hypothesis-hiding: No information about Alice's hypothesis or domain knowledge 
used to influence the hypothesis is leaked                                                                                                               


• Verifiability: If Eve tampers with the results, she cannot deceive Alice into learning a 
faulty model (here let Alice have private access to some random ``ground truth" 
experiments)



PAC-verification 
[GRSY20]

• Learning: If Prover reports the 
experiment results truthfully, Verifier 
learns a good model                      a


• Concept-hiding               a


• Hypothesis-hiding                                                                                                        
a


• Verifiability: If Prover tampers with the 
results, she cannot deceive Verifier 
into learning a faulty model (here let 
Verifier have private access to some 
random ``ground truth" examples)

Cryptographic Sensing 
[IKOS19]

• Learning: Sensor obtains an exact 
model/object from the experiments                                              
a


• Secrecy: Object remains hidden to an 
adversary provided that it is drawn from a 
distribution of sufficient minimum entropy 
(entropic security)


• Hypothesis-hiding                                                                                                            
a


• Verifiability



More Related Work
Or: what this talk is not about

• Differentially private learning [KLNRS11]


• Data privacy — not learner privacy 

• Verifiable computation [K92, M00]


• Verify computation steps — not good learning outcomes


• Requires computational entity



Example Application: Drug Discovery

• How does A prevent trade secrets being revealed by experimental design?


• How does A prevent the lab from “double-selling” data to competitor?


• How does A prevent the lab from returning faulty data (say, given access 

to some random ground truth examples)?



Example Application: Drug Discovery

• Cannot execute protocol with the lab


• A must reveal some experiments at some point, while the lab must read the 

results at some point — no way around this


• We must design an algorithm that interacts only with “Nature” 

• Q+A only



More applications

• Our work could be useful in any setting where we want to hide what we are 
learning but can’t execute a protocol


• E.g. Model extraction attacks 
Client tries to extract model by using active learning strategies 



Contributions

• The Covert Learning model, which augments PAC learning with MQ with hiding guarantees


• Covert Learning algorithms for parity functions and decision trees (agnostic) 

• The Covert Verifiable Learning model, which augments PAC learning with MQ with hiding and 
verifiability guarantees 


• Covert Verifiable Learning algorithms for parity functions and decision trees 
(agnostic)


• Covert Verifiable Learning even with no privately accessed examples


• Covert Verifiable Learning algorithms for O(log n)-juntas with strong privacy and 
verifiability (perfect, statistical)



Contributions Today

• The Covert Learning model, which augments PAC learning with MQ with hiding guarantees


• Covert Learning algorithms for parity functions and decision trees (agnostic) 

• The Covert Verifiable Learning model, which augments PAC learning with MQ with hiding and 
verifiability guarantees 


• Covert Verifiable Learning algorithms for parity functions and decision trees 
(agnostic)


• Covert Verifiable Learning even with no privately accessed examples


• Covert Verifiable Learning algorithms for O(log n)-juntas with strong privacy and 
verifiability (perfect, statistical)



Itinerary

• Establish the Covert Learning model


• Covert Learning for noisy parities


• Covert Learning for heavy Fourier coefficients


• Establish the Covert Verifiable Learning model


• Transform Covert Learning into Covert Verifiable Learning


• Concluding questions and remarks



Alice’s task?  
Learning with membership queries

• The structure-activity relationship is a boolean function                                           




• Alice's initially hypothesized set of structure-activity models  A hypothesis 

class


• Experiments  synthesized membership queries

f : {feature, ¬feature}n → {bind, ¬bind}

⟺

⟺



PAC Learning terminology
• For every , A hypothesis class  is a class of functions    


• For every  is a concept class, where every  is a distribution over 




• For an example  is an input, and  is a label 

• A loss function (w.r.t. a concept _n)  quantifies how good a hypothesis 

 is at approximating a concept. For instance misclassification error:

n ∈ ℕ ℋn ⊆ {f : {0,1}n → {0,1}}

n ∈ ℕ, 𝒟n Dn ∈ 𝒟n

{0,1}n × {0,1}

(x, y) ∼ Dn, x y

D ℒDn
: ℋn → [0,1]

h ∈ ℋ

ℒD(h) = Pr(x,y)∼D [h(x) ≠ y]



A hypothesis class  is agnostic PAC learnable (w.r.t. concept class  ) if (roughly)


 There is an algorithm  receiving enough examples so that:


For any concept ,


 outputs  s.t. 


H 𝒟n

A

D ∈ 𝒟n, ϵ, δ > 0

A h ∈ H Pr
A [ℒD(h) ≤ ℒD(H) + ϵ] ≥ 1 − δ

ℒD(H) = infh∈H ℒD(h)

Agnostic PAC Learning

• With membership queries: there is 
also an oracle that allows the 
learning algorithm to directly query 
the concept


• Agnostic:  need not contain a 
perfect hypothesis for the concept


•  has a big impact on the resulting 
function which is output by 
important choice, whatever  is

H

H
A ⟶
H



•  a collection of 
hypothesis classes 


• Learner input: 


• Learner queries concept


•  Learner outputs: for any  
, a hypothesis  such that

𝒞n = {Hi
n}i∈[m]

ϵ, δ < 1, Hn ∈ 𝒞n

Dn ∈ 𝒟n
h ∈ Hn

Pr
A [ℒD(h) ≤ ℒD(H) + ϵ] ≥ 1 − δ

The Covert Learning Model



• Adversary attempts to deduce 
information about either the concept 

 or the hypothesis class 
 


• Objection: some concept classes we 
cannot hide, e.g. the constant function


• Adversary could apply Occam learning

Dn ∈ 𝒟n
Hn ∈ 𝒞n

The Covert Learning Model

Occam Learning (informal) An 
Occam learning algorithm is an 
algorithm that, given any set of 
examples to a concept, outputs a 
hypothesis which is 

1) consistent with all examples, 

2) “succint” 



There exists a p.p.t. simulator such 

that for every 

    

where  (random examples of 

 ).

Hn ∈ 𝒞n, Dn ∈ 𝒟n

{Sim(S)} ≈ {interaction transcript}
S ∼ Dn

Dn

The Covert Learning Model

Why allow the simulator to have random examples?

“Zero-knowledge-like” in the presence of public data set of 
random examples

Many learning problems thought to be computationally 
hard to learn from random examples (e.g. decision 
trees, small depth circuits, parities with noise)

Random examples are the minimum leakage, not just a 
result of the definition



Trivial example
Covert Learning is easy when PAC learning is possible

• Every  is efficiently PAC learnable


• Covert Learning algorithm: 


• Request a sufficiently large set of random examples from the oracle.


• Run the PAC learning algorithm.


• The simulator returns the random examples given as input.


• Examples: Constant term DNFs, parities (in the absence of noise).

Hn ∈ 𝒞n



Itinerary

• Establish the Covert Learning model


• Covert Learning for noisy parities


• Covert Learning for heavy Fourier coefficients


• Establish the Covert Verifiable Learning model


• Transform Covert Learning into Covert Verifiable Learning
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Parities with no noise are trivial, so what about the 

noisy case?


Focus on the concept hiding guarantee

Covert Learning for noisy parities



Covert Learning for noisy parities
LPN

• Search LPN: find s. 


• Decision LPN: distinguish  from uniformly random. Both are thought to be 
subexponentially-hard

a, ⟨a, s⟩ ⊕ e

LPN distribution [BFKL92]:


Sample  from Bernoulli r.v. with mean 
constant  


Sample  uniformly at random


Return  (  is persistent over each example)

s ∈ {0, 1}𝑛, 𝑒 ∈ {0, 1}
p < 1/2

𝑎 ∈ {0, 1}𝑛

𝑎, ⟨𝑎, s⟩ ⊕ 𝑒 s



Covert Learning for noisy parities
Low-noise LPN

• Search LPN: find s. 


• Decision LPN: distinguish  from uniformly random. Both are thought to be 
subexponentially-hard

a, ⟨a, s⟩ ⊕ e

Low-noise LPN distribution [Ale03]:


Sample  from Bernoulli r.v. with mean 
 


Sample  uniformly at random


Return  (  is persistent over each example)

s ∈ {0, 1}𝑛, 𝑒 ∈ {0, 1}
p = 1/ n

𝑎 ∈ {0, 1}𝑛

𝑎, ⟨𝑎, s⟩ ⊕ 𝑒 s

Is there a covert learning algorithm for learning s?



Covert Learning for noisy parities

(actually, there exists a Covert Learning algorithm for noisy parities 
unconditionally. Recall previous example.)

Theorem: (informal) If low-noise LPN is hard, then there exists a Covert 
Learning algorithm for parities with respect to the low-noise LPN distribution



Learning noisy parities the leaky way
Covert

• Send pseudorandom queries


• Generate a pseudorandom mask for each query by using LPN 
distribution

MASK1 MASK2 MASKn



Covert Learning for noisy parities

“Masked queries”

Query

Mask: low noise LPN sample



Covert Learning for noisy parities



Covert Learning for noisy parities

Random queries



Covert Learning for noisy parities

X-or lemma For , and random variables  that are i.i.d. from Bernoulli r.v. with mean , 
we have that 


                                                        


μ ∈ [0, 1/2] E1 ⋯ Em μ

Pr [
m

⨁
i=1

Ei = 0] =
1
2

+
1
2

(1 − 2μ)m

Decoding procedure:

Noisy terms are biased to 0 w.p. 
1
2

+ Ω(1) Repetition and majority voting to decode bit-by-bit



Can we covertly learn more 
interesting concepts?
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Boolean Fourier Analysis
Review

• Let  . In particular, we care about functions  


• For , we define   by  


• The Fourier expansion of   is   where  is the Fourier 

coefficient on 


• Every function can be uniquely represented by its Fourier expansion


• We say that  is “heavy” if , and the degree of  is

f : 𝔽n
2 → ℝ f : 𝔽n

2 → {−1,1}

S ⊆ [n] χS : 𝔽n
2 → ℝ χS(x) = (−1)

∑
i∈S

xi

f : 𝔽n
2 → ℝ f(x) = ∑

S⊆[n]

̂f(S)χS(x) ̂f(S)

S

̂f(S) ̂f(S) ≥ 1/poly(n) ̂f(S) |S |

̂f(S)



Why Learn Fourier Coefficients?

• By definition,     


• If we know  such that  , then we have a 
hypothesis that agrees with  on  fraction of 
inputs (just take  )


• Good for learning w.r.t. uniform distribution

̂f(S) = 𝔼x[ f(x)χS(x)]

S ̂f(S) ≥ τ
f 1/2 + τ/2

χS

• Finding all heavy Fourier coefficients of degree  is strong enough to 
efficiently learn -size decision trees. Not known in plain PAC learning 
model


• Our goal: find (covertly) the  Fourier coefficients of a function 

O(log n)
poly(n)

O(log n)

0

0

0

0

0 0 01

1

1

1 1 1

1



Covert Learning of low degree Fourier coefficients

 


• Membership query  bypasses distribution over inputs and returns 


• Goal: find Fourier coefficients of   while satisfying privacy guarantees

f : {0,1}n → {−1,1}

q f(q)

f



Covert Learning of low degree Fourier coefficients
Highlighting hypothesis-hiding

• Learner has a hypothesis (due to expert domain knowledge) that all heavy Fourier coefficients 

of a function are contained in a subset .


• Valuable: this knowledge could improve the efficiency of a normal learning algorithm (e.g. KM 

algorithm). 


• Leaky: repeated restrictions of KM queries clearly reveals information on  


• How to hide this expert domain knowledge?

T ⊆ [n]

T



Answer: do Covert Learning for collection of hypothesis classes, where each 
hypothesis class in indexed by  


Covert Learning then hides all information about 


T ⊆ [n]

T

Theorem: (informal) Under the subexponential LPN 
assumption, the collection of all low-degree Fourier 
subsets is covertly learnable.



Covert Learning of low degree Fourier coefficients
Squared-log entropy assumption

• Extend the technique from the previous result: “masked queries"


• Need decisional LPN variant  that provides super-polynomial 

hardness with  -bit secrets of just   entropy (due to [YZ16])


• Variant implied by subexponential LPN:  -hard with  samples [YZ16]

(𝗌𝗊𝗅𝗈𝗀𝖫𝖯𝖭)

n Θ(log2(n))

2 n 2 n



Covert Learning of low degree Fourier coefficients



Covert Learning of low degree Fourier coefficients
Simulator

query 1

query m



Covert Learning of low degree Fourier coefficients

• Let  


• For query  , let    (“masked query” technique)


• What can we say about ?   


• Let   be a randomized mapping defined  , where s 
is the  secret used on the  for , and  is a random -bit string

𝗈𝗍𝗉 ∼ 𝗌𝗊𝗅𝗈𝗀𝖫𝖯𝖭n

q ∈ {0,1}n ̂q = q ⊕ 𝗈𝗍𝗉

f( ̂q)

ϕ ϕ( f( ̂q)) := f( ̂q) ⋅ χs(r)
𝗌𝗊𝗅𝗈𝗀𝖫𝖯𝖭 𝗈𝗍𝗉 q r n

Lemma:    If  s.t.   and  , then there exists a small constant   such that


  


In particular, if , then .

k ⊆ [n] |k | = O(log n) ̂f(k) ≥ τ c

𝔼
ϕ,q, ̂q [ϕ( f( ̂q)) ⋅ χk(q)] ≥ Ω(τn−c)

̂f(S) ≥ 1/poly(n) 𝔼[ϕ( f( ̂q))χk(q)] ≥ 1/poly(n)



• The lemma provides a “Goldreich-Levin type” environment 


   


• The Goldriech-Levin reduction/algorithm gives a method for extracting a  s.t. 
  in time  (w.h.p.)

𝔼
ϕ,q, ̂q [ϕ( f( ̂q)) ⋅ χk(q)] ≥ Ω(τn−c)

k
̂f(k) ≥ τ poly(n, 1

τ )

Covert Learning of low degree Fourier coefficients

Noisy Predictor



Covert Learning of low degree Fourier coefficients

• Run the Goldreich-Levin algorithm in the 
“masked query regime”


• Can run Goldreich-Levin on some subset of 
interesting indices


• This encodes secret hypothesis 


• Pseudorandomness hides 


• At the end we obtained 

T

T

S ∈ T : |S | ≤ O(log n) , ̂f(S) ≥ 1/poly(n)



Covert Learning of poly(n) size decision trees

Sufficient to produce an approximation to  that is competitive with the optimal 
-size decision tree approximating .


    

f poly(n)
f

Theorem: (informal) Under the subexponential LPN assumption, the collection 
of all subsets of decision trees is covertly learnable.
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Covert Verifiable Learning
A malicious adversary

• Interactive between the learner 
and adversarial intermediary (AI)


• AI monitors access to the 
membership oracle


• The learner request queries 
from oracle, but responses my 
be corrupted by AI



Covert Verifiable Learning
The verifiability guarantee

• Allow the learner to abort


• Access to set of uniformly 
random “ground truth” examples

Goal: If AI chooses to corrupt, the learner should not output a faulty hypothesis 

except with small probability (similar to soundness)

Verifiability for learning algorithm  for collection  

Inputs:  


For any , any , any AI  which corrupts 
oracle responses, 


                             


We say that verifiability is computational if  is p.p.t..

A 𝒞n

Hn ∈ 𝒞n, ϵ, δ, 𝒮

Dn ∈ 𝒟n Hn ∈ 𝒞n, 𝒮 ∼ Dm
n I

Pr [ℒ(A) > ℒ(Hn) + ϵ A ≠ abort] < δ

I



Covert Verifiable Learning
How to extend privacy?

Real:


Adversary (a distinguisher)                                               
chooses                                                




 is drawn from 


Learner gets  , AI gets 


Learner tries to learn  with access to oracle. AI sees the 
learner's queries and responses and is given the chance to 
modify the responses. At the end of interaction, AI outputs a 
string denoted by 


Output 

Hn ∈ 𝒞n, Dn ∈ 𝒟n, ϵ, δ

𝒮 Dn

𝒮, Hn, ϵ, δ ϵ, δ

Hn

𝗋𝖾𝖺𝗅𝒟n
A,I

(Hn, ϵ, δ, 𝒮, 𝗋𝖾𝖺𝗅𝒟n
A,I)

Ideal: 

Adversary (a distinguisher)                                            
chooses                                              

 


 is drawn from 


Sim gets access to  , where  is the set of 
examples given to the real learner. AI gets 


Sim “interacts” with the oracle. AI “views” the queries and 
responses and may change the responses. The simulator 
outputs a string,  


Output 

Hn ∈ 𝒞n, Dn ∈ 𝒟n, ϵ, δ

𝒮′ Dn

𝒮, 𝒮′ , Hn, ϵ, δ 𝒮
ϵ, δ

𝗂𝖽𝖾𝖺𝗅Sim
I

(Hn, ϵ, δ, 𝒮, 𝗂𝖽𝖾𝖺𝗅Sim
I )
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• Establish the Covert Verifiable Learning model


• Transform Covert Learning into Covert Verifiable Learning


• Concluding questions and remarks



Augmenting Covert Learning with Verifiability

• The learner now has access to set  of random examples — how to leverage?


• We have proved that the set of queries  are pseudorandom 


• Idea: Alternate “testing” and “learning”

S

Q {Q} ≈ {S}

Input: S = random examples 

Repeat r times:  
Flip coin c 
If c = 0 

covert_learn() 
If c = 1 

Query section of S 
abort if results 
inconsistent 

Claim Suppose that on one iteration, w.p. , the AI can corrupt at least 1 
oracle response without causing the learner to abort. Then the squared-log LPN 
problem is efficiently solved with advantage .


 — Follows from the fact that AI is always caught lying in case c = 1

1/2 + ϵ

ϵ

• Eventually AI is caught or one round is an 
uncorrupted “learning” phase


• Verifiability follows from learning 
guarantee of basic Covert Learning 
algorithm



Theorem: (informal) Under the subexponential LPN 
assumption, the collection of all subsets of decision trees 
is verifiably covertly learnable.


Theorem: (informal) Under the subexponential LPN 
assumption, the collection of all subsets of low-degree 
Fourier subsets is verifiably covertly learnable.



Next Questions

• Can we obtain more Covert Learning algorithms (e.g. new learning problems, large fields, real 
numbers)?


• In the verifiability setting, can we remove the assumption of privately accessed dataset? (Yes, if we 
relax the fully agnostic setting)


• When is there a general compiler for turning plain PAC learning with MQ algorithms into Covert 
(Verifiable) Learning algorithms?

Little questions

Big question



Thank you


